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In this paper, we construct the equations of generalized thermoelasicity for a non-homogeneous isotropic hollow

cylider with a variable modulus of elasticity and thermal conductivity based on the Lord and Shulman theory. The

problem has been solved numerically using the finite element method. Numerical results for the displacement, the

temperature, the radial stress, and the hoop stress distributions are illustrated graphically. Comparisons are made

between the results predicted by the coupled theory and by the theory of generalized thermoelasticity with one relaxation

time in the cases of temperature dependent and independent modulus of elasticity.
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1. Introduction

In the postwar years, we have seen a rapid devel-
opment of themoelasticity stimulated by various engi-
neering sciences.[1] Most investigations were done un-
der the assumption of the temperature-independent
material properties, which limited the applicability of
the solutions obtained to certain ranges of tempera-
ture. At high temperature, the material characteris-
tics, such as the modulus of elasticity, the Poisson’s
ratio, and the coefficient of thermal conductivity, are
no longer constants.[2] In recent years, due to progress
in various fields of science and technology, taking into
consideration the real behaviour of the material char-
acteristics becomes an actual necessity. In some in-
vestigations, they have been taken as functions of
coordinates.[3,4]

The classical uncoupled theory of thermoelastic-
ity predicts two phenomena that are not compatible
with the physical observations. First, the equation of
heat conduction of this theory does not contain any
elastic terms contrary to the fact that elastic changes
produce heat effects. Second, the heat equation is of
parabolic type, predicting infinite speeds of propaga-
tion for heat waves.

Biot[5] introduced the theory of coupled (CD)

thermoelasticity to overcome the first shortcoming.
The governing equations for this theory are coupled,
eliminating the first paradox of the classical theory.
However, his theory still has the second shortcoming,
since the heat equation for the coupled theory is also
parabolic.

Lord and Shulman[6] (LS) introduced the the-
ory of generalized thermoelasticity with one relaxation
time. In this theory, a modified law of heat conduc-
tion including both the heat flux and its time deriva-
tive replaces the conventional Fourier’s law. The heat
equation associated with this theory is a hyperbolic
one, and hence automatically eliminates the para-
dox of infinite speeds of propagation inherent from
both the uncoupled and the coupled theories of ther-
moelasticity. Most often, the solutions obtained us-
ing this theory differ little qualitatively from those
obtained using either the coupled or the uncoupled
theories, though, the solutions differ quantitatively.
However, for many problems involving steep heat gra-
dients and when short time effects are sought, this
theory gives markedly different results compared to
those predicted by any of the other theories. This
is the case encountered in many problems in indus-
try, especially inside nuclear reactors where very high
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heat gradients act for very short times. This theory
was extended by Dhaliwal and Sherief[7] to generalized
isotropic media with the presence of heat sources lack-
ing in the formulation of Lord and Shulman.[6] Sherief
and Dhaliwal[8] solved a thermal shock problem. Re-
cently, Othman[9,10] used this theory to study the de-
pendence of the modulus of elasticity on the reference
temperature in the two-dimensional generalized ther-
moelasticity in the absence and the presence of ro-
tation respectively. Othman et. al.[11] have studied
the transient waves caused by a line heat source with
a uniform velocity inside an isotropic homogeneous
thermoelastic perfectly conducting half-space perme-
ated into a uniform magnetic field. This theory has
been applied in many problems.[12,13]

The exact solution of the generalized thermoelas-
ticity theory governing equations for a coupled and
non-linear/linear problem exists only for very special
and simple initial and boundary conditions. For gen-
eral problems, a numerical solution technique should
be used. For this reason, the finite element method
(FEM) is chosen. The method of weighted resid-
uals offers us the formulation of the finite element
equations, and we obtain best approximated solutions
to linear/nonlinear ordinary/partial differential equa-
tions. Applying this method basically involves three
steps. The first step is to assume that the general
behaviours of the unknown field variables satisfy the
given differential equations. Substituting these ap-
proximating functions into the differential equations
and the boundary conditions results in some errors
called the residual. The residual has to vanish in an
average sense over the solution domain. The second
step is the time integration. The time derivatives of
the unknown variables have to be determined by the
former results. The third step is to solve the equa-
tions resulting from the first and the second steps by
the solving algorithm of the finite element program.[14]

Abbas,[15] Youssef and Abbas,[16] Abbas and Abd-
allah,[17] and Abbas and Othman[18] applied the finite
element method in different problems.

In the present paper, we have formulated the
problem of the generalized thermo-elasticity of a non-
homogeneous isotropic hollow cylinder with thermal
relaxation, and the modulus of elasticity is taken as
a linear function of the reference temperature. The
problem is solved numerically using the finite element
method. Numerical results for the distributions of dis-
placement, temperature, radial stress, and hoop stress
are presented graphically. The results indicate that

the effects of the reference temperature are very pro-
nounced. Results obtained in this paper can be used
to design various homogeneous thermoelastic elements
under thermal load to meet special engineering re-
quirements.

2. Formulation of problem

In the context of the generalized thermoelasticity
theory, the system of equations that includes the dis-
placement, the stress, the strain, and the temperature
for a linear, homogenous, and isotropic thermoelastic
continuum takes the form

(λ + µ)uj,ij + µui,jj + Fi − γT,i = ρüi, (1)

the energy equation has the form

KT,ii = ρCv

(
Ṫ + t0T̈

)
+

(
1 + t0

∂

∂t

)

× (γT0u̇i,i − ρQ) , (2)

and the constitutive equations are given by

τij = λui,iδij + µ (ui,j + uj,i) − γT δij , (3)

where λ and µ are Lame’s constants, ρ is the density
of the medium, Cv is the specific heat at a constant
strain, t is the time, t0 is the relaxation time, T is the
temperature, T0 is the reference temperature, K is the
thermal conductivity, δij is the Kronecker symbol, τij

is the component of the stress tensor, ui is the compo-
nent of the displacement vector, Fi is the body force
vector, Q is the heat source, γ = (3λ + 2µ)αt, and αt

is the coefficient of the linear thermal expansion.
In the cylindrical coordinate system (r, θ, z), for

the axially symmetric problem, ur = ur(r, z, t), uθ =
0, uz = uz(r, z, t). Furthermore, if only the axisym-
metric plane strain problem is considered, we have
ur = u(r, t) and uθ = uz = 0. The strain–displacement
relations are

err =
∂u

∂r
, eθθ =

u

r
,

ezz = erz = erθ = eθz = 0. (4)

The stress–strain relations are

τrr = 2µ
∂u

∂r
+ λ

(
∂u

∂r
+

u

r

)
− γT, (5)

τθθ = 2µ
u

r
+ λ

(
∂u

∂r
+

u

r

)
− γT, (6)

τzz = λ

(
∂u

∂r
+

u

r

)
− γT, τrz = τrθ = τθz = 0. (7)
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It is assumed that there is no body force and heat
source in the medium, and the equation of motion
and the energy equation have the form

∂τrr

∂r
+

τrr − τθθ

r
= ρ

∂2u

∂t2
, (8)

K
1
r

∂

∂r

(
r
∂T

∂r

)

= ρCv

(
∂T

∂t
+ t0

∂2T

∂t2

)
+ γT0

(
1 + t0

∂

∂t

)

×
(

∂2u

∂t∂r
+

1
r

∂u

∂t

)
. (9)

In this study, we assume the non-homogeneous prop-
erty of the material is characterized by

λ = λ0f(T ), µ = µ0f(T ),

γ = γ0f(T ), K = K0f(T ), (10)

where f(T ) is a given non-dimensional function of
temperature. In the case of a temperature indepen-
dent modulus of elasticity, f(T ) = 1. Let f(T ) =
(1 − α∗T0), where α∗ is the parameter referred to the
dependence on the temperature. In the case of the ref-
erence temperature independent modulus of elasticity
and thermal conductivity, α∗ = 0, λ0, µ0, γ0, and K0

are considered to be constants. Substituting Eq. (10)
into Eqs. (5)–(9), we obtain

ατrr =
[
2µ0

∂u

∂r
+ λ0

(
∂u

∂r
+

u

r

)
− γ0T

]
, (11)

ατθθ =
[
2µ0

u

r
+ λ0

(
∂u

∂r
+

u

r

)
− γ0T

]
, (12)

ατzz =
[
λ0

(
∂u

∂r
+

u

r

)
− γ0T

]
,

τrz = τrθ = τθz = 0, (13)

(λ0 + 2µ0)
(

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2

)
− γ0

∂T

∂r

= αρ0
∂2u

∂t2
, (14)

K0
1
r

∂

∂r

(
r
∂T

∂r

)

= ρCvα

(
∂T

∂t
+ t0

∂2T

∂t2

)
+ γ0T0

(
1 + t0

∂

∂t

)

×
(

∂2u

∂t∂r
+

1
r

∂u

∂t

)
, (15)

where γ0 = (3λ0 + 2µ0)αt and α = 1/(1 − α∗T0). It
is convenient to change the preceding equations into
the dimensionless form. To do this, the dimensionless
parameters are introduced as

(r′, u′) =
(r, u)
c1ω1

, (t′, t′0) =
(t, t0)
ω1

,

(τ ′
rr, τ

′
θθ, τ

′
zz) =

1
µ

(τrr, τθθ, τzz) , Θ′ =
γT

ρc2
1

, (16)

where c2
1 = (λ0 + 2µ0)/ρ, and ω1 = K0/(ρCνc2

1).
From Eqs. (11)–(15), we obtain (after dropping the
dash for convenience)

ατrr = (2 + a1)
∂u

∂r
+ a1

u

r
− (2 + a1)Θ, (17)

ατθθ = a1
∂u

∂r
+ (2 + a1)

u

r
− (2 + a1)Θ, (18)

ατzz = a1

(
∂u

∂r
+

u

r

)
− (2 + a1)Θ, (19)

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
− ∂Θ

∂r
= α

∂2u

∂t2
, (20)

K0
1
r

∂

∂r

(
r
∂T

∂r

)

= α

(
∂T

∂t
+ t0

∂2T

∂t2

)
+ ε

(
1 + t0

∂

∂t

)

×
(

∂2u

∂t∂r
+

1
r

∂u

∂t

)
, (21)

with a1 = λ0/µ0, ε = γ2
0T0/(ρ2

0c
2
1Cν). From the pre-

ceding description, the initial and the boundary con-
ditions may be expressed as

u(r, 0) =
∂u(r, 0)

∂t
= 0,

Θ(r, 0) =
∂Θ(r, 0)

∂t
= 0, (22)

τrr(a, t) = 0, τrr(b, t) = 0,

Θ(a, t) = H(t),
∂Θ(b, t)

∂r
= 0, (23)

where a and b are the inner and the outer radii of the
hollow cylinder, and H(t) denotes the Heaviside unit
step function.

3. Finite element method

In order to investigate the numerical solution of
the thermal shock problem in a non-homogeneous
isotropic hollow cylinder using the generalized ther-
moelasticity theory, the FEM (Reddy[19] and Cook
et al.[20]) is adopted due to its flexibility in modeling
layered structures and its capability in obtaining the
full field numerical solution. The governing Eqs. (20)
and (21) are coupled with the initial and the bound-
ary conditions (22) and (23). The numerical values
of the dependent variables like displacement u and
temperature Θ are obtained at the interesting points,
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which are called the degrees of freedom. The weak for-
mulations of the non-dimensional governing equations
are derived. A set of independent test functions con-
sisting with the displacement δu and the temperature
δΘ is prescribed. The governing equations are mul-
tiplied by independent weighting functions and then
are integrated over the spatial domain with the bound-
ary. Applying integration by parts and making use of
the divergence theorem reduce the order of the spatial
derivatives and allow the application of the bound-
ary conditions. The same shape functions are defined
piecewise on the elements. Using the Galerkin pro-
cedure, the unknown fields u and Θ and the corre-
sponding weighting functions are approximated by the
same shape functions. The last step towards the finite
element discretization is to choose the element type
and the associated shape functions. Three nodes of
quadrilateral elements are used. The shape function
is usually denoted by letter N and is usually the co-
efficient that appears in the interpolation polynomial.
A shape function is written for each individual node
of the finite element and has the property that its
magnitude is 1 at that node and 0 for all other nodes
in that element. We assume that the master element
has its local coordinates in the range of [−1, 1]. In
our case, the one-dimensional quadratic elements are
used, which are given by linear shape functions

N1 =
1
2

(1 − ξ) , N2 =
1
2

(1 + ξ) , (24)

and quadratic shape functions

N1 =
1
2

(
ξ2−ξ

)
, N2 = 1−ξ2, N3 =

1
2

(
ξ2+ξ

)
. (25)

On the other hand, the time derivatives of the un-
known variables have to be determined by the New-
mark time integration method.[20]

4. Numerical results

With an aim to illustrate the problem, we will
present some numerical results. The copper material
is chosen for the numerical computation. The physical
data are given as λ0 = 7.76× 1010 kg ·m−1 · s−2, µ0 =
3.86 × 1010 kg ·m−1 · s−2, T0 = 293 K, ρ0 = 8.954 ×
103 kg ·m−3, Cv = 3.831 × 102 m2 ·K−1 · s−2, αt =
17.8 × 10−6 K−1, K0 = 3.86 × 102 kg ·m ·K−1 · s−3.

The field quantities, the displacement, the tem-
perature, and the stresses depend not only on time
t and space r, but also on parameter α. It has been

observed that in the Lord and Shulman theory, param-
eter α has a significant effect on the field quantities.
Here all the variables/parameters are taken in the di-
mensionless forms. Figures 1–4 show the results for
the displacement, the temperature, the radial stress,
and the hoop stress at t = 0.2 for two different values
of α (α = 0.0, 1.95).

Fig. 1. (colour online) Displacement distributions.

Fig. 2. (colour online) Temperature distributions.

Fig. 3. (colour online) Radial stress distributions.

Fig. 4. (colour online) Hoop stress distributions.
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Figure 1 shows that displacement u increases for
1.0 < r < 1.2 and then starts to decrease for r = 1.2
(maximum). It is clear that the displacement in
the case of temperature dependent elastic moduli is
greater than that in the case of temperature inde-
pendent elastic moduli for 1.0 < r < 1.2, and vise
versa for r > 1.2. Figure 2 depicts that temperature
Θ decreases with the increasing r. It is clear that the
temperature in the case of temperature independent
elastic moduli (α = 1) is greater than that in the case
of temperature dependent elastic moduli (α = 1.95).
Figure 3 shows that radial stress τrr decreases and
then starts to increase at r = 1.0 (minimum). It is
clear that the radial stress in the case of tempera-
ture independent elastic moduli is greater than that
in the case of temperature dependent elastic moduli
for 1.0 < r < 1.25, and vise versa for r > 1.25. Fig-
ure 4 shows that hoop stress τθθ increases and then
starts to decrease at r = 1.2 (maximum), and finally
starts to increase at r = 1.3 (minimum). It is clear
that the hoop stress in the case of temperature depen-
dent elastic moduli is greater than that in the case of
temperature independent elastic moduli.

Figures 5–8 show the results for the displace-
ment, the temperature, the radial stress, and the
hoop stress at t = 0.2 for four different values of
t0 (t0 = 0, 0.03, 0.06, 0.09) at α = 1.95. Figure 5
shows that displacement u in the LS theory is greater
than that in the CD theory for 1.0 < r < 1.25 and
is the opposite for r > 1.25. Figure 6 shows that the
temperature in the LS theory is greater than that in
the CD theory for 1.0 < r < 1.4 and is the opposite for
r > 1.4. Figures 7 and 8 show that the radial and the
hoop stresses in the LS theory are less than those in
the CD theory for 1.0 < r < 1.4 and are the opposite
for r > 1.4.

Fig. 5. (colour online) Displacement distributions.

Fig. 6. (colour online) Temperature distributions.

Fig. 7. (colour online) Radial stress distributions.

Fig. 8. (colour online) Hoop stress distributions.
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